
Ceatech leti

On the in-flight calibration of the experimental Absolute Scalar Magnetometer vector mode on **board the Swarm satellites**

Thomas Jager¹, François Bertrand¹, Viviane Cattin¹, Jean-Michel Léger¹, Isabelle Fratter², Laura Brocco³, Pierre Vigneron³, Xavier Lalanne³ and Gauthier Hulot³ [1] Université Grenoble Alpes, F-38000 Grenoble, France CEA, LETI, MINATEC Campus, F-38054 Grenoble, France [2] Centre National d'Etudes Spatiales (CNES), France

[3] Equipe de Géomagnétisme, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, UMR 7154 CNRS/INSU, 1 rue Jussieu, F-75005 Paris, France

MINATEC Campus | 17 rue des martyrs | F-38054 Grenoble Cedex Établissement public à caractère industriel et commercial RCS Paris B 775 685 019

jean-michel.leger@cea.fr

GP51A-3698

[5] Brocco L. et al, Comparing Swarm's Nominal Level1b Magnetic Data and ASM Vector Field Experimental Data: a Convenient Tool for Understanding Data Quality Issues, AGU 2014.

ASM PERFORMANCE SUMMARY

	Swarm Alpha ASM FM1A	Swarm Beta ASM FM2A	Swarm Charlie ASM FM3A
	1.1	1.0	1.4
ļ	[DC-0.4 Hz]	[DC-0.4 Hz]	[DC-0.4 Hz]
	/ [DC-100 Hz]	/ [DC-100 Hz]	/ [DC-100 Hz]
products	65	65	65
		Oursen Data	
	Swarm Alpha ASM FM1A	Swarm Beta ASM FM2A	Swarm Charlie ASM FM3A
	~2	~2	~4
Г)	+/- 20	+/- 20	+/-40
(nT)	2.6	2.7	5.3
eaned	1.5-1.8	1.9-2.3	5-6
	NO	NO	NO
y (nT)	0.2	0.2	0.6
bility (nT)	<0.1	<0.1	<0.3

CONCLUSIONS & PERSPECTIVES

• In addition to high performance scalar nominal data, ASM instruments are able to provide robust vector data at the same location and time with a long term stability σ lower than 0.1 nT and other performances characteristics in agreement with on ground characterizations • A self-consistent ASM scalar and vector product (ASM-V) has been successfully used as input for IGRF model determination and other studies (cf IPGP work [3-5] also presented at

• A single ASM vector calibration seems achievable but still needs further improvements

REFERENCES

[1] Leger J. M., F. Bertrand, T. Jager, M. L. Prado, I. Fratter and J. C. Lalaurie (2009), Swarm absolute scalar and vector magnetometer based on helium 4 optical pumping, Procedia Chemistry, 1, 634-637. [2] Gravrand O., A. Khokhlov, J. L. Le Mouël and J. M. Léger (2001), On the calibration of a vectorial

[3] Hulot G. et al, Swarm's Absolute Magnetometer (ASM) Experimental Vector Mode, a Unique

[4] Vigneron P. et al, A 2015 IGRF Candidate Model Based on Swarm's Experimental ASM Vector