

leti

Swarm's Absolute Scalar Magnetometer performances

AGU Conference, San Francisco 12/12/07 J-M.Léger

The Swarm mission

- Earth Explorer mission selected by ESA in 2004
- 3 identical satellites on different polar orbits (⇒ Earth's magnetic field sources separation), intended to deliver the best-ever survey of the geomagnetic field and its temporal evolution
- Launch currently scheduled during 2013 second trimester

Absolute Scalar Magnetometer's role

Calibration of the vector instrument and compensation of its long term drifts (mostly offsets & transfer functions)

VFM -fluxgates- & ASM -resonance scalar sensor-

ASM specificities wrt Overhauser instruments (Oersted/Champ scalar reference magnetometers)

- EMC issues are reduced (optical detection instead of signal pick-up coils)
- Sensor manufacturing is significantly simplified
- Sensor size can be easily reduced without impacting the instrument resolution (not exploited for Swarm -one challenge at a time!-)
- Several new components (athermal laser, piezoelectric motor, ASIC)

 numerous additional qualifications required (carried out with CNES expertise and support) and increased complexity

ASM performances: resolution

No 1/f noise

leti

(-9 dB @ 4 Hz)

ASM performances: accuracy (1/2)

Characterization of the residual sensor's remanent and induced effects thanks to differential scalar measurements with NMR reference sensors for several configurations

Typical differential measurement baseline stability < 20 pT

Residual error after correction < 25 pT $_{pp},\,\sigma\cong$ 5 pT

AGU San Francisco 12/12/07 J-M.Léger 6 © CEA. All rights reserved

ASM performances: accuracy (2/2)

Definition of instrument level 1b corrections after extensive characterization of systematic errors (except for datation errors)

Error type	Bloch- Siegert error	Vector aliasing	ASM in-orbit anisotropy	PPS precision (system error) <u>worst case</u> : 5.10-7 x B0	ASM Datation (system error) <u>worst case</u> : 1 ms*30 nT/s	Quadratic norm of the residual errors omax
Initial uncorrected ASM error	50 pT @ 46 μT	23 pT @ 46 μT	≈ 100 pT	32,5 pT @ 65 μT	30 pT	122 pT
Remaining error after ASM level 1B algorithm correction	< 5 pT	< 5 pT	< 5 pT	<mark>32,5 pT</mark> @ 65 μT uncorrected	30 pT uncorrected	45 pT

Stability demonstrated below 20 pT on a 15 days period (Chambon-La-Forêt, IPGP, 2010)

ASM burst mode: towards higher frequency measurements

- Intrinsic bandwidth of the ASM is of the order of 500 Hz
- However, the nominal sampling rate of the ASM is set at 1 Hz (anti-aliasing filters limit the ASM bandwidth to # 0,4 Hz in this mode), so that the instrument's capabilities are not fully exploited
- A burst mode (Fs = 250 Hz) is implemented and will be operated for several orbits during low/medium/high magnetic activity periods during the commissioning phase

A new feature : the ASM vector mode

Superposition of 3 ac modulations along 3 orthogonal directions (amplitude ~ 50 nT_p, M_t # 14 µA.m² & M_1 # 8 µA.m² $\Rightarrow < 1 \text{ pT}_p @1,5 \text{ m}$)

■ No offsets ⇒ only six unknown parameters to be determined (3 transfer functions and 3 angles -deviations from orthogonality-)

Synchronous scalar and vector continuous measurements

- Auto-scaling capabilities and permanent measurement quality assessment
- Perfect time synchronization (and exactly same filtering)
- Simplified EMC (but high constraints on Low Frequency ambient noise)
- Vector precision is proportional to B₀* R_{scal}, i.e better @ low fields (constant angular resolution)

ASM-V preliminary performance assessment

3D Magnetic spirale figure

Thins shell runs @ 10,20,40 & 60 µT along 3 revolution axes

The facility's characteristics prevent full vector performance assessment

Magnetic field amplitude (μT)	10	20	40	60
Vector resolution (nT/vHz)	0,3	0,7	1,1	1,8
Scalar residual standard deviation (nT)	0,19	0,17	0,24	0,35

Conclusions

 Swarm satellites launch now scheduled for 2nd trimester 2013

Courtesy of ESA / EADS

- ASM will deliver high quality scalar data and vector measurements
- Burst data (250 Hz) can be collected if scientific interest is expressed (ionospheric studies)
- Opportunity to cross-calibrate two different vector magnetometers (VFM / ASM-V) in flight

More information @ http://swarm-mission.cnes.fr

Contact: jean-michel.leger@cea.fr

LABORATOIRE D'ÉLECTRONIQUE ET DE TECHNOLOGIES DE L'INFORMATION

CEA-Leti MINATEC Campus, 17 rue des Martyrs 38054 GRENOBLE Cedex 9 Tel. +33 4 38 78 36 25

www.leti.fr

Thanks for your attention

SAVE THE DATE

