European Space Agency


## Sequential modelling of the Earth core magnetic field

## Guillaume Ropp, Vincent Lesur

## IPGP, Geomagnetism

## Introduction

- Overall goal : modelling the core's magnetic field and surface flow at small time scales ( $\lesssim 1$ year )
- Correlation based, sequential data assimilation
- Co-estimation of the surface flow
- Results : time series of core field models for 2000-2020
- October $1^{\text {st }}$ : IGRF-13 candidate


## Sequential modelling approach

## Kalman filter :

- Analysis: correlation based bayesian inversion of satellite and observatory data
- Prior information added through correlation matrices (Holschneider et al, 2016)
$\rightarrow$ Two different approaches for building correlation matrices: Holschneider et al. (2016) or Numerical dynamo experiments (Aubert et al.)
- Prediction: estimation of the model at the next time step. Evolution based on a combination of stochastic prediction and Taylor expansion.
- Smoothing: backward smoothing according to RTS (Anderson and Moore 1979)

Continuous data assimilation : allows for continuous assimilation of new SWARM and observatory data

## Analysis process

- Data set covers the satellite era. It includes observatory data, CHAMP satellite data and SWARM-A satellite data. Data are selected for magnetically quiet night times
- Three months of data are used for each 3-month analysis period.
- Data weights are evaluated through iterative Huber-weighting
- Data set spans exactly from 01/01/2000 to 07/31/2019
- For each analysis step are modelled:
- Static core field (SH degree 1 to 18)
- SV core field (SH degree 1 to 18)
- Lithospheric field (SH degree 15 to 30 -- known field subtracted from data for SH 30 to 120)
- Static external field in GSM coordinate system (SH degree 3)
- Static external field in SM coordinate system (SH degree 3)
- Dst dependent fields in SM coordinate systems (SH degree 3)
- IMFBy dependent field in SM coordinate systems (SH degree 3)
- Induced field and its time variations in GEO coordinate system (SH degree 6)
- Observatory offsets (3x195 observatories)


## Prediction and smoothing

- Prediction step:
- Core field: predicted through the SV
- SV: predicted using a stochastic process (timescale ~11-15 years)
- External fields: no time correlation
- Lithospheric field: regarded as static (huge timescale)
- Backward smoothing:
- Performed over the whole era, starting at the last time step.
- Based on the Rauch-Tung-Striebel (RTS) smoother (Anderson and Moore 1979)


## Model MCM-00-20

## Power spectra at years 2006.0 and 2018.5 (Earth's surface)




Chaos model : Chaos 6x9

## Model MCM-00-20

SV field Z comp. at the CMB at year 2006.0 (CE)


SV field Z comp. at the CMB at year 2006.0 (HS)


SV field Z comp. at the CMB at year 2006.0 (chaos)


## Model MCM-00-20

SV field Z comp. at the CMB at year 2018.5 (CE)


SV field Z comp. at the CMB at year 2018.5 (HS)


SV field Z comp. at the CMB at year 2018.5 (chaos)


## Model MCM-00-20

- Times series (Holschneider prior)


Core field


Secular Variation

## Model MCM-00-20

Resolution at low harmonic degrees (large scales)



## Model MCM-00-20

## Resolution at higher harmonic degrees (small scales)




## Model MCM-00-20




- Separation of the induced field :
- Generated by currents induced at 400 km depth by the magnetospheric field
- Smoother time series
- Increase in covariance due to separation of sources
- Which features are to be attributed to the induced field ?
- What is the intensity of this contribution ?


## Future developments

- $1^{\text {st }}$ objective : IGRF 2019
- Improvement in the modelling of the induced field $\rightarrow$ Set better prior information
- Co-estimation of the core surface flow
- Continuous assimilation of SWARM Data
- Improvements in priors for the external fields (Nikolai Tsyganenko)


## Thank you for your attention

