









# Sequential modelling of the Earth core magnetic field

Guillaume Ropp, Vincent Lesur

IPGP, Geomagnetism

#### Introduction

- Overall goal: modelling the core's magnetic field and surface flow at small time scales ( $\leq$  1year)
  - Correlation based, sequential data assimilation
  - Co-estimation of the surface flow
- Results: time series of core field models for 2000-2020

• October 1<sup>st</sup>: IGRF-13 candidate

# Sequential modelling approach

#### Kalman filter:

- Analysis: correlation based bayesian inversion of satellite and observatory data
  - Prior information added through correlation matrices (Holschneider et al, 2016)
    - → Two different approaches for building correlation matrices: Holschneider et al. (2016) or Numerical dynamo experiments (Aubert et al.)
- Prediction: estimation of the model at the next time step. Evolution based on a combination of stochastic prediction and Taylor expansion.
- Smoothing: backward smoothing according to RTS (Anderson and Moore 1979)

**Continuous data assimilation :** allows for continuous assimilation of new SWARM and observatory data

# Analysis process

- Data set covers the satellite era. It includes observatory data, CHAMP satellite data and SWARM-A satellite data. Data are selected for magnetically quiet night times
  - Three months of data are used for each 3-month analysis period.
  - Data weights are evaluated through iterative Huber-weighting
  - Data set spans exactly from 01/01/2000 to 07/31/2019

- For each analysis step are modelled:
  - Static core field (SH degree 1 to 18)
  - SV core field (SH degree 1 to 18)
  - Lithospheric field (SH degree 15 to 30 -- known field subtracted from data for SH 30 to 120)
  - Static external field in GSM coordinate system (SH degree 3)
  - Static external field in SM coordinate system (SH degree 3)
  - Dst dependent fields in SM coordinate systems (SH degree 3)
  - IMFBy dependent field in SM coordinate systems (SH degree 3)
  - Induced field and its time variations in GEO coordinate system (SH degree 6)
  - Observatory offsets (3x195 observatories)

# Prediction and smoothing

#### Prediction step:

- Core field: predicted through the SV
- SV: predicted using a stochastic process (timescale ~ 11-15 years)
- External fields: no time correlation
- Lithospheric field: regarded as static (huge timescale)

#### Backward smoothing:

- Performed over the whole era, starting at the last time step.
- Based on the Rauch-Tung-Striebel (RTS) smoother (Anderson and Moore 1979)

Power spectra at years 2006.0 and 2018.5 (Earth's surface)



Chaos model: Chaos 6x9





Lmax = 14







Lmax = 14



• Times series (*Holschneider* prior)





Core field

**Secular Variation** 

Resolution at low harmonic degrees (large scales)





#### Resolution at higher harmonic degrees (small scales)









- Separation of the induced field :
  - Generated by currents induced at 400 km depth by the magnetospheric field
  - Smoother time series
  - Increase in covariance due to separation of sources
- Which features are to be attributed to the induced field?
- What is the intensity of this contribution?

# Future developments

• 1<sup>st</sup> objective : IGRF 2019

- Improvement in the modelling of the induced field
  → Set better prior information
- Co-estimation of the core surface flow

Continuous assimilation of SWARM Data

Improvements in priors for the external fields (Nikolai Tsyganenko)

# Thank you for your attention