Status of the ASM-V and ASM Burst mode data

Rémi Madelon, Pierre Vigneron, Gauthier Hulot, Thomas Jager, Jean-Michel Léger, Pierdavide Coïsson

The Absolute Scalar Magnetometer

The ASM nominal mode has 2 purposes:

- 1) Produce absolute scalar measurements of the Earth's magnetic field
 - → Official scalar data at 1 Hz from MAGxLR_1B
- 2) Provide an absolute reference for calibrating L1B vector data measured by the Vector Field Magnetometer
 - → Vector data at 50 Hz from MAGxHR_1B and at 1 Hz from MAGxLR_1B

In addition to the nominal mode, the ASM can be used in:

Burst mode (Scalar mode) OR ASM-V mode (Vector mode)

ASM additional modes

$$||B_{tot}|| = ||B_0 + \sum_{i=x,y,z} b_{mi} \cos(\Omega_i t)||$$

The internal sampling of the scalar sensors at 1 kHz, allows the ASM to be used in:

- 1) Conjunctions with 3 sets of coils to provide **vector components at 1 Hz**: **ASM-V** mode
- → The 3 perpendicular coils generate periodic magnetic fields with known frequencies and amplitudes
- → Vector data are self-calibrated
- 2) Burst mode to provide scalar measurements at 250 Hz

Either: Nominal mode (scalar at 1 Hz) + ASM-V mode (vector components at 1 Hz)

Or: Nominal mode (scalar at 1 Hz) + Burst mode (scalar at 250 Hz)

ASM-V and Burst data availability

Default mode is the **ASM-V** mode:

- → ASM-V data are available since the launch of the mission
- → ASM-V data production is still **experimental**

Burst mode was validated during commissioning phase: 2013-2014

- → A production chain was developed in 2018-2019 to provide burst data on a regular basis (~ 1 week/month)
- → Burst data production is now **official**

ASM-V data production

Main steps:

- 1) Conversion of the ASMxVEC_0 raw data to physical units and ASM time building
- 2) Correction of intrinsic disturbances using CCDB
 - → Such as geometric and distortion effects
- 3) Stray fields correction using ASMxAUX 1B
 - → Same kind of corrections made on official product: battery, thrust etc.
- 4) Position retrieving and alignment solving using MAGxLR_1B
 - → Conversion from ASM time to UTC time and frame rotation

ASM-V product file

ASM-V data are saved into a CDF file:

Field Name Type		Dim	Units	Decription			
Timestamp	CDF_DOUBLE	N	MJD-2000	Time of measurements (t_UTC)			
Latitude	CDF_DOUBLE	N	0	Position in ITRF – Latitude (equal to the one stored in official MAGx_LR_1B file)			
Longitude	CDF_DOUBLE	N	0	Position in ITRF – Longitude (equal to the one stored in official MAGx_LR_1B file)			
Radius	CDF_DOUBLE	N	km	Position in ITRF – Radius (equal to the one stored in official MAGx_LR_1B file)			
F_Ref	CDF_DOUBLE	N	nT	Reference scalar magnetic field at t_UTC time (equal to the one stored in official MAGx_LR_1B file)			
F_ASMV	CDF_DOUBLE	N	nT	Scalar magnetic field estimated alongside the ASMV vector estimates at t_UTC time. It is analogous to F_Ref except for the fact that this is now an output of the present chain; it is not computed from the modulus of the vector estimate			

ASM-V product file

B_VFM_VFM	CDF_DOUBLE	N*3	nT	Official vector magnetic field estimated from VFM data at t_UTC time, in the VFM frame (equal to the one stored in official MAGx_LR_1B file)
B_VFM_NEC	CDF_DOUBLE	N*3	nΤ	Official vector magnetic field estimated from VFM data at t_UTC time, in the NEC frame (equal to the one stored in official MAGx_LR_1B file)
B_ASMV_ASM	CDF_DOUBLE	N*3	nT	Experimental vector magnetic field estimated from ASM data at t_UTC time, in the ASM frame
B_ASMV_VFM	CDF_DOUBLE	N*3	nT	Experimental vector magnetic field estimated from ASM data at t_UTC time, in the VFM frame
q_VFM_ASM	CDF_DOUBLE	N*4	-	Rotation of ASM frame to VFM sensor frame
q_NEC_CRF	CDF_DOUBLE	N*4	Ť	Rotation of CRF to NEC frames (equal to the one stored in official MAGx_LR_1B file)

- → No flag stored: it is recommended to compute scalar residuals
- → Data might be affected by the Sun-related thermoelectric effect (dBSun)

ASM-V data provision

Data released so far (beware: all before re-calibration):

Satellite	First day of data	Last day of data	Release
A	2013-12-22	2013-12-28	1
A	2013-11-29	2015-02-28	2
A	2016-05-29	2016-06-05	4
В	2013-12-22	2013-12-28	1
В	2013-11-29	2015-02-28	2
С	2014-01-20	2014-01-27	3

Documents:

- → SW-ASMV-DD-IPGP-0002 Experimental L1B Product Definition For First Release of Data.pdf
- $\rightarrow SW-ASMV-DD-IPGP-0003_Experimental_L1B_Product_Definition_For_\textbf{Second}_Release_of_Data.pdf$
- → SW-ASMV-DD-IPGP-0004_Experimental_L1B_Product_Definition_For_Third_Release_of_Data.pdf
- → SW-ASMV-DD-IPGP-0006_Experimental_L1B_Product_Definition_For_Fourth_Release_of_Data.pdf

More data have been produced since and all data have been re-calibrated, and will be made available

ASM-V data are currently used to build geomagnetic field models

→ Presentation by Vigneron et al. on Wednesday:

"Core field modelling using ASM-V data"

ASM Burst data production

Main steps:

- 1) Conversion of the ASMxBUR_0 raw data to physical units and UTC Time building
- 2) Dynamic steps correction due to data encoding and outliers detection: Flagged
- 3) Correction of intrinsic disturbances such as the Bloch-Siegert effect
- 4) Stray fields correction using ASMxAUX 1B
 - → Same kind of corrections made on official product: battery, thrust etc.
- 5) Position retrieving using MAGxHR_1B
- 6) Magnetic condition identification and heater activation detection using HKx_NOM_0: Flagged

ASM Burst data flags

Outlier: flagged

Dynamic step: flagged and corrected

ASM Burst data flags

Magnetic condition and heater activation are **flagged independently**. If both flags are equal to 1, a heater perturbation may be observed:

ASM Burst product file

ASM Burst data are saved into a **CDF file**:

Field Name	Type	Dim	Units	Scope	Decription	
Timestamp	CDF_EPOCH	N	Epoch	V	Time of measurements (UTC)	
TimeFrac	CDF_UINT4	N	ns	V	Fractional time of observation: ns within second	
Latitude	CDF_DOUBLE	N	Degree	V	Position in ITRF - Geocentric latitude	
Longitude	CDF_DOUBLE	N	Degree	V	Position in ITRF - Geocentric longitud	
Radius	CDF_DOUBLE	N	m	V	Position in ITRF – Geocentric Radius	
F	CDF_DOUBLE	N	nT	V	Magnetic field intensity	
dF_Stray	CDF_DOUBLE	N	nT	V	Magnetic stray fields correction	
dF_BlochSiegert	CDF_DOUBLE	N	nT	V	Bloch-Siegert correction	
Flags	CDF_UINT1	N		v	Binary combination of the values taken by Flag_outlier, Flag_magnetic_condition, Flag_heater, Flag_step	
Time_piezo	CDF_EPOCH	Nm	Epoch	V	Timestamp of ASM motor activations	

ASM Burst data provision

ASM Burst sessions:

Se	Satellite			
2014-01	From 07 to 08	Α	В	C
2014-01	19	A	В	C
2014-01	28	A	В	C
2014-02	From 22 to 23	A	В	C
2018-07	From 24 to 26	Α	হল।	1.5
2019-01	From 21 to 28	-	В	1 -
2019-05	From 13 to 20	A	(2)	12
2019-06	11	A	-	-
2019-08	From 11 to 19	A	1970	1 -

+ Few hours in 2013-11 and 2013-12

Released data:

 \rightarrow 2018-07-25 SW-A

Doc: SW-ASMV-DD-IPGP-0008_ASM_Burst_Product_Definition.pdf

Use of data:

Burst data are currently used to study lightning-generated ELF whistlers

→ Presentation by Coïsson et al. on Wednesday :

"ELF whistlers analysis for ionospheric modelling: Initial results of the ILGEW project"

Current state

ASM-V mode:

- \rightarrow Vector data at 1 Hz
- → Continuous production except during Burst mode
- → Status: Experimental

ASM Burst mode:

- → Scalar data at 250 Hz
- → Production on a regular basis: ~ 1 week/month
- → Status: Official (All produced data are released aiming at less than 2 to 4 weeks of latency)