Precise model of the core magnetic field over the satellite era

Guillaume Ropp, Vincent Lesur

IPGP, Geomagnetism

Introduction

- Motivation
 - Fast core dynamics
 - Magnetic field inversion and core flow calculations
- Modelling the core field: State of the art
 - Resolving the field
 - Observatory data
 - Satellite data
- Future work

Getting to the fast core dynamics \rightarrow **Torsional waves ?**

First highlighting of TW in the data (Gillet et al. 2015)

3

Getting to the fast core dynamics \rightarrow **Torsional waves?**

 Surface core flow inverted from the C³FM model (Wardinski & Lesur, 2012)

Getting to the fast core dynamics \rightarrow **Torsional waves** ?

Getting to the fast core dynamics \rightarrow Torsional waves?

- Very little to no signal for TW in our flow model
- Can TW be reached through inversion of magnetic data?
- How to access these (and other) fast dynamic features of the core flow?

→ Build reliable core field models

State of the art

- → Need for reliable core field models at small time scales
 - Describe precisely the external fields in space and time
 - → Complex parameterisation
 - Models needs to cover several decades to study core dynamics (TW → T ≈ 6 yr), but limited computer capabilities impose to work sequentially
 - → Limited amount of data
 - Introduce realistic prior information on the field's spatial and temporal variations
 - → Correlation based modelling & Kalman filters

Application to observatory data

Estimated vertical down component of the core magnetic field SV at KAK observatory (Lesur et al. 2017)

Gauss coefficient g_3^3 (Lesur et al. 2017)

Application to satellite data

- Data set covers the end of CHAMP satellite and the current SWARM satellite
- Sequence of monthly models
- Within a month are modelled:
 - Static core field (SH degree 1 to 18)
 - SV core field (SH degree 1 to 18) + SA
 - Lithospheric field (SH degree 1 to 30 -- known field subtracted from data for SH 30 to 120)
 - Static external field in GSM coordinate system (SH degree 3)
 - Static external field in SM coordinate system (SH degree 3)
 - Dst dependent fields in SM coordinate systems (SH degree 3)
 - IMFBy dependent field in SM coordinate systems (SH degree 3)
 - Observatory offsets (3X165 observatories)
 - The core flow velocity and acceleration
 - Ionosphere, field aligned currents and tide signals

Gauss coefficient g₁⁰

Core SH 1-14 Model 2015.0

Core CHAOS-6 Model 2015.0

SV SH 1-14 Model 2015.0

SV CHAOS-6 Model 2015.0

- → Fit with CHAOS-6 model
- → Bad fit with the prior spectrum

Future work

- 1st objective : IGRF candidate model 2019
- Introduction of a Kalman smoother for the time evolution of the model

- Modeling of the SV, SA (access to core dynamics) and the flow
- Numerical dynamo outputs as prior for the flow inversion
 - → Access to the fast dynamics of the core flow

Thank you for your attention